• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Professional Property Inspections

Home Inspections in Yuma Arizona and surrounding areas

  • Home
  • Services
  • Schedule a Home Inspection Online
  • Yuma Contractor Recommendations

Arc-Fault Circuit Interrupters (AFCIs)

January 24, 2021 by ppihomei

by Nick Gromicko, CMI® and Kenton Shepard Arc-fault circuit interrupters (AFCIs) are special types of electrical receptacles or outlets and circuit breakers designed to detect and respond to potentially dangerous electrical arcs in home branch wiring.
How do they work?AFCIs function by monitoring the electrical waveform and promptly opening (interrupting) the circuit they serve if they detect changes in the wave pattern that are characteristic of a dangerous arc. They also must be capable of distinguishing safe, normal arcs, such as those created when a switch is turned on or a plug is pulled from a receptacle, from arcs that can cause fires. An AFCI can detect, recognize, and respond to very small changes in wave pattern.
What is an arc?When an electric current crosses an air gap from an energized component to a grounded component, it produces a glowing plasma discharge known as an arc. For example, a bolt of lightening is a very large, powerful arc that crosses an atmospheric gap from an electrically charged cloud to the ground or another cloud. Just as lightning can cause fires, arcs produced by domestic wiring are capable of producing high levels of heat that can ignite their surroundings and lead to structure fires.
According to statistics from the National Fire Protection Agency for the year 2005, electrical fires damaged approximately 20,900 homes, killed 500 people, and cost $862 million in property damage. Although short-circuits and overloads account for many of these fires, arcs are responsible for the majority and are undetectable by traditional (non-AFCI) circuit breakers. 
Where are arcs likely to form?Arcs can form where wires are improperly installed or when insulation becomes damaged. In older homes, wire insulation tends to crystallize as it ages, becoming brittle and prone to cracking and chipping. Damaged insulation exposes the current-carrying wire to its surroundings, increasing the chances that an arc may occur.
Situations in which arcs may be created:

  • electrical cords damaged by vacuum cleaners or trapped beneath furniture or doors.
  • damage to wire insulation from nails or screws driven through walls.
  • appliance cords damaged by heat, natural aging, kinking, impact or over-extension.
  • spillage of liquid.
  • loose connections in outlets, switches and light fixtures.

Where are AFCIs required?Locations in which AFCIs are required depend on the building codes adopted by their jurisdiction. The 2006 International Residential Code (IRC) requires that AFCIs be installed within bedrooms in the following manner:

E3802.12 Arc-Fault Protection of Bedroom Outlets. All branch circuits that supply120-volt, single-phase, 15- and 20-amp outlets installed in bedrooms shall be protected by a combination-type or branch/feeder-type arc-fault circuit interrupter installed to provide protection of the entire branch circuit.

Exception: The location of the arc-fault circuit interrupter shall be permitted to be at other than the origination of the branch circuit, provided that:

  1. The arc-fault circuit interrupter is installed within 6 feet of the branch circuit overcurrent device as measured along the branch circuit conductors, and
  2. The circuit conductors between the branch circuit overcurrent device and the arc-fault circuit interrupter are installed in a metal raceway or a cable with metallic sheath.

The National Electrical Code (NEC) offers the following guidelines concerning AFCI placement within bedrooms:Dwelling Units. All 120-volt, single phase, 15- and 20-ampere branch circuits supplying outlets installed in dwelling unit in family rooms, dining rooms, living rooms, parlors, libraries, dens, sun rooms, recreation rooms, closets, hallways, or similar rooms or areas shall be protected by a listed arc-fault circuit interrupter, combination-type installed to provide protection of the branch circuit.Home inspectors should refrain from quoting exact code in their reports. A plaintiff’s attorney might suggest that code quotation means that the inspector was performing a code inspection and is therefore responsible for identifying all code violations in the home.  Some jurisdictions do not yet require their implementation in locations where they can be helpful.What types of AFCIs are available?AFCIs are available as circuit breakers for installation in the electrical distribution panel. 

Nuisance Tripping An AFCI might activate in situations that are not dangerous and create needless power shortages. This can be particularly annoying when an AFCI stalls power to a freezer or refrigerator, allowing its contents to spoil. There are a few procedures an electrical contractor can perform in order to reduce potential “nuisance tripping,” such as:

  • Check that the load power wire, panel neutral wire and load neutral wire are properly connected.
  • Check wiring to ensure that there are no shared neutral connections.
  • Check the junction box and fixture connections to ensure that the neutral conductor does not contact a grounded conductor.

Arc Faults vs. Ground FaultsIt is important to distinguish AFCI devices from Ground Fault Circuit Interrupter (GFCI) devices. GFCIs detect ground faults, which occur when current leaks from a hot (ungrounded) conductor to a grounded object as a result of a short-circuit. This situation can be hazardous when a person unintentionally becomes the current’s path to the ground. GFCIs function by constantly monitoring the current flow between hot and neutral (grounding) conductors, and activate when they sense a difference of 5 milliamps or more. Thus, GFCIs are intended to prevent personal injury due to electric shock, while AFCIs prevent personal injury and property damage due to structure fires. 
In summary, AFCIs are designed to detect small arcs of electricity before they have a chance to lead to a structure fire.  

10 Easy Ways to Save Money & Energy in Your Home

January 24, 2021 by ppihomei

by Nick Gromicko, CMI®, Ben Gromicko, and Kenton Shepard 1

Most people don’t know how easy it is to make their homes run on less energy, and here at InterNACHI, we want to change that. 

Drastic reductions in heating, cooling and electricity costs can be accomplished through very simple changes, most of which homeowners can do themselves. Of course, for homeowners who want to take advantage of the most up-to-date knowledge and systems in home energy efficiency, InterNACHI energy auditors can perform in-depth testing to find the best energy solutions for your particular home. 

Why make your home more energy efficient? Here are a few good reasons:

  • Federal, state, utility and local jurisdictions’ financial incentives, such as tax breaks, are very advantageous for homeowners in most parts of the U.S.
  • It saves money. It costs less to power a home that has been converted to be more energy-efficient.
  • It increases the comfort level indoors.
  • It reduces our impact on climate change. Many scientists now believe that excessive energy consumption contributes significantly to global warming.
  • It reduces pollution. Conventional power production introduces pollutants that find their way into the air, soil and water supplies.

1. Find better ways to heat and cool your house. 

As much as half of the energy used in homes goes toward heating and cooling. The following are a few ways that energy bills can be reduced through adjustments to the heating and cooling systems:

  • Install a ceiling fan. Ceiling fans can be used in place of air conditioners, which require a large amount of energy.
  • Periodically replace air filters in air conditioners and heaters.
  • Set thermostats to an appropriate temperature. Specifically, they should be turned down at night and when no one is home. In most homes, about 2% of the heating bill will be saved for each degree that the thermostat is lowered for at least eight hours each day. Turning down the thermostat from 75° F to 70° F, for example, saves about 10% on heating costs.
  • Install a programmable thermostat. A programmable thermostat saves money by allowing heating and cooling appliances to be automatically turned down during times that no one is home and at night. Programmable thermostats contain no mercury and, in some climate zones, can save up to $150 per year in energy costs.
  • Install a wood stove or a pellet stove. These are more efficient sources of heat than furnaces.
  • At night, curtains drawn over windows will better insulate the room.

Image of a high-efficiency thermostat at the InterNACHI® House of Horrors® in Colorado.

2. Install a tankless water heater.

Demand-type water heaters (tankless or instantaneous) provide hot water only as it is needed. They don’t produce the standby energy losses associated with traditional storage water heaters, which will save on energy costs. Tankless water heaters heat water directly without the use of a storage tank. When a hot water tap is turned on, cold water travels through a pipe into the unit. A gas burner or an electric element heats the water. As a result, demand water heaters deliver a constant supply of hot water. You don’t need to wait for a storage tank to fill up with enough hot water.

3. Replace incandescent lights.

The average household dedicates 11% of its energy budget to lighting. Traditional incandescent lights convert approximately only 10% of the energy they consume into light, while the rest becomes heat. The use of new lighting technologies, such as light-emitting diodes (LEDs) and compact fluorescent lamps (CFLs), can reduce the energy use required by lighting by 50% to 75%. Advances in lighting controls offer further energy savings by reducing the amount of time that lights are on but not being used. Here are some facts about CFLs and LEDs:

  • CFLs use 75% less energy and last about 10 times longer than traditional incandescent bulbs.
  • LEDs last even longer than CFLs and consume less energy.
  • LEDs have no moving parts and, unlike CFLs, they contain no mercury.

4. Seal and insulate your home.

Sealing and insulating your home is one of the most cost-effective ways to make a home more comfortable and energy-efficient, and you can do it yourself. A tightly sealed home can improve comfort and indoor air quality while reducing utility bills. An InterNACHI energy auditor can assess  leakage in the building envelope and recommend fixes that will dramatically increase comfort and energy savings.

The following are some common places where leakage may occur:

  • electrical receptacles/outlets;
  • mail slots;
  • around pipes and wires;
  • wall- or window-mounted air conditioners;
  • attic hatches;
  • fireplace dampers;
  • inadequate weatherstripping around doors;
  • baseboards;
  • window frames; and
  • switch plates.

Because hot air rises, air leaks are most likely to occur in the attic. Homeowners can perform a variety of repairs and maintenance to their attics that save them money on cooling and heating, such as: 

  • Plug the large holes. Locations in the attic where leakage is most likely to be the greatest are where walls meet the attic floor, behind and under attic knee walls, and in dropped-ceiling areas.
  • Seal the small holes. You can easily do this by looking for areas where the insulation is darkened. Darkened insulation is a result of dusty interior air being filtered by insulation before leaking through small holes in the building envelope. In cold weather, you may see frosty areas in the insulation caused by warm, moist air condensing and then freezing as it hits the cold attic air. In warmer weather, you’ll find water staining in these same areas. Use expanding foam or caulk to seal the openings around plumbing vent pipes and electrical wires. Cover the areas with insulation after the caulk is dry.
  • Seal up the attic access panel with weatherstripping. You can cut a piece of fiberglass or rigid foamboard insulation in the same size as the attic hatch and glue it to the back of the attic access panel. If you have pull-down attic stairs or an attic door, these should be sealed in a similar manner.

5. Install efficient showerheads and toilets.

The following systems can be installed to conserve water usage in homes:

  • low-flow showerheads. They are available in different flow rates, and some have a pause button which shuts off the water while the bather lathers up;
  • low-flow toilets. Toilets consume 30% to 40% of the total water used in homes, making them the biggest water users. Replacing an older 3.5-gallon toilet with a modern, low-flow 1.6-gallon toilet can reduce usage an average of 2 gallons-per-flush (GPF), saving 12,000 gallons of water per year. Low-flow toilets usually have “1.6 GPF” marked on the bowl behind the seat or inside the tank;
  • vacuum-assist toilets. This type of toilet has a vacuum chamber that uses a siphon action to suck air from the trap beneath the bowl, allowing it to quickly fill with water to clear waste. Vacuum-assist toilets are relatively quiet; and
  • dual-flush toilets. Dual-flush toilets have been used in Europe and Australia for years and are now gaining in popularity in the U.S. Dual-flush toilets let you choose between a 1-gallon (or less) flush for liquid waste, and a 1.6-gallon flush for solid waste. Dual-flush 1.6-GPF toilets reduce water consumption by an additional 30%.

6. Use appliances and electronics responsibly.

Appliances and electronics account for about 20% of household energy bills in a typical U.S. home. The following are tips that will reduce the required energy of electronics and appliances:

  • Refrigerators and freezers should not be located near the stove, dishwasher or heat vents, or exposed to direct sunlight. Exposure to warm areas will force them to use more energy to remain cool.  
  • Computers should be shut off when not in use. If unattended computers must be left on, their monitors should be shut off. According to some studies, computers account for approximately 3% of all energy consumption in the United States.
  • Use efficient ENERGY STAR-rated appliances and electronics. These devices, approved by the U.S. Department of Energy and the Environmental Protection Agency’s ENERGY STAR Program, include TVs, home theater systems, DVD players, CD players, receivers, speakers, and more. According to the EPA, if just 10% of homes used energy-efficient appliances, it would reduce carbon emissions by the equivalent of 1.7 million acres of trees.
  • Chargers, such as those used for laptops and cell phones, consume energy when they are plugged in. When they are not connected to electronics, chargers should be unplugged.
  • Laptop computers consume considerably less electricity than desktop computers.

7. Install daylighting as an alternative to electrical lighting.

Daylighting is the practice of using natural light to illuminate the home’s interior. It can be achieved using the following approaches:

  • skylights. It’s important that they be double-pane or they may not be cost-effective. Flashing skylights correctly is key to avoiding leaks;
  • light shelves. Light shelves are passive devices designed to bounce light deep into a building. They may be interior or exterior. Light shelves can introduce light into a space up to 2½ times the distance from the floor to the top of the window, and advanced light shelves may introduce four times that amount;
  • clerestory windows.  Clerestory windows are short, wide windows set high on the wall. Protected from the summer sun by the roof overhang, they allow winter sun to shine through for natural lighting and warmth; and 
  • light tubes.  Light tubes use a special lens designed to amplify low-level light and reduce light intensity from the midday sun. Sunlight is channeled through a tube coated with a highly reflective material, and then enters the living space through a diffuser designed to distribute light evenly.

8. Insulate windows and doors.

About one-third of the home’s total heat loss usually occurs through windows and doors. The following are ways to reduce energy lost through windows and doors:

  • Seal all window edges and cracks with rope caulk. This is the cheapest and simplest option.
  • Windows can be weatherstripped with a special lining that is inserted between the window and the frame. For doors, apply weatherstripping around the whole perimeter to ensure a tight seal when they’re closed. Install quality door sweeps on the bottom of the doors, if they aren’t already in place.
  • Install storm windows at windows with only single panes. A removable glass frame can be installed over an existing window.
  • If existing windows have rotted or damaged wood, cracked glass, missing putty, poorly fitting sashes, or locks that don’t work, they should be repaired or replaced.

9. Cook smart.

An enormous amount of energy is wasted while cooking. The following recommendations and statistics illustrate less wasteful ways of cooking:

  • Convection ovens are more efficient that conventional ovens. They use fans to force hot air to circulate more evenly, thereby allowing food to be cooked at a lower temperature. Convection ovens use approximately 20% less electricity than conventional ovens.
  • Microwave ovens consume approximately 80% less energy than conventional ovens.
  • Pans should be placed on the matching size heating element or flame. 
  • Using lids on pots and pans will heat food more quickly than cooking in uncovered pots and pans.
  • Pressure cookers reduce cooking time dramatically.
  • When using conventional ovens, food should be placed on the top rack. The top rack is hotter and will cook food faster. 

10. Change the way you do laundry.

  • Do not use the medium setting on your washer. Wait until you have a full load of clothes, as the medium setting saves less than half of the water and energy used for a full load.
  • Avoid using high-temperature settings when clothes are not very soiled. Water that is 140° F uses far more energy than 103° F for the warm-water setting, but 140° F isn’t that much more effective for getting clothes clean.
  • Clean the lint trap every time before you use the dryer. Not only is excess lint a fire hazard, but it will prolong the amount of time required for your clothes to dry.
  • If possible, air-dry your clothes on lines and racks.
  • Spin-dry or wring clothes out before putting them into a dryer. 

Homeowners who take the initiative to make these changes usually discover that the energy savings are more than worth the effort. InterNACHI home inspectors can make this process much easier because they can perform a more comprehensive assessment of energy-savings potential than the average homeowner can.  

Safe Work Near Power Lines

August 11, 2018 by ppihomei

August is a perfect time to prepare for safe work near overhead and underground power lines.

Underground lines – Whether putting up a fence, installing a deck, replacing underground piping or simply planting a tree, call the electric or gas company to have underground lines marked before you dig. The depth of utility lines varies and there may be multiple lines in a common area. Digging without calling can disrupt service to an entire neighborhood, harm you and those around you and potentially result in fines and repair costs. Call before every digging job so your underground utility lines can be marked to prevent undesired consequences.

Overhead power lines – Precautions with overhead lines are just as important when trimming trees, painting or siding your home, installing a TV antenna or for a variety of jobs involving a ladder with extended reach near energized power lines. Your electric company cares about the safety of you and your family and urges you to contact them if an overhead line is getting in the way of your project. Coming into contact with an energized powerline could be fatal, so call your electric company for advice.

The Great Dishwasher Fight

February 5, 2018 by ppihomei

A lot of people who have automatic dishwashers don’t use them, but they might save money on water and electricity if they did.

Even though 68 percent of homeowners own dishwashers, about 20 percent use them less than once a week, suggesting people are hand washing dishes.

Many reasons could account for this, but one of them should not be cost. Dishwashing by hand uses 3.5 times more water than a modern dishwasher and three times as much electricity, according to a 2011 study by the University of Bonn.

Appliance maker Bosch says more than 40 percent of families argue about the proper way to load a dishwasher.

About 60 percent agree about whether to pre-rinse. Nearly 39 percent of the arguers say they disagree on whether knives should point up or down, while 30 percent argue about where plastic containers should go.

General Electric Co. has defined three main types of dishwasher loaders:

  • Protectors, who are concerned that utensils are loaded handle up so the eating end isn’t touched when unloading.
  • Organizers want to get everything in and out as quickly as possible.
  • Curators are the artists, particular about how the result looks, with similar items placed together, including directing pan handles in the same direction. The curators are also the culprits who rearrange the load.

What is the right way?

Dishwasher manufacturers and home style maven Martha Stewart agree on some basics for the right way to load a dishwasher:

  1. If the washer has a third, shallow rack on top, load flatware and large utensils there to free up space below.
  2. Put glass and plastic on the top rack where water pressure and heat are less intense.
  3. Point knives down for safety. Mix utensils in the basket so spoons and forks don’t nest together.
  4. Martha Stewart advises never to wash nonstick or cast iron pans in the dishwasher but stainless steel pans get cleaner in the dishwasher.
  5. Read the manual to find out about specialized settings. Nearly 70 percent of user just press ‘normal.’

Don’t put these items in the dishwasher

According to home expert Martha Stewart, the following items should never be put in the dishwasher: Acrylics and plastics, aluminum, antiques, blown glass, bronze, cast iron, china with metallic decoration, crystal, any item with bone or wood inlays, gold-plated flatware, iron, knives (they get dull), nonstick pans, milk glass, pewter, rubber tools, tins, wooden spoons.

Is pre-rinsing really necessary?

Doesn’t everyone pre-rinse dishes?

Maybe they do, but they don’t have to, according to soap and dishwasher manufacturers.

Except for removing large particles of food, pre-rinsing can actually hinder dishwasher cleaning, says the makers of Cascade. Enzymes in Cascade are designed to attach to food particles. Without particles, they have nothing to attach to, according to the Wall Street Journal.

Dishwashers made by Whirlpool have ‘TargetClean’ options in which sensors detect soil on dishes. Jet sprays focus on those casserole dishes and power off baked on food. 

The Samsung Zone Booster setting puts more water pressure on one side where especially dirty dishes are stacked.

Primary Sidebar

Copyright © 2023 Professional Property Inspections. All rights reserved.